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Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing
endocrine disrupting compounds (EDCs) during early development, potentially altering physiological
capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried
out short-term (4 day) exposures using three doses each of 17 a-ethinylestradiol (EE2), 17 B-estradiol
(E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and 1 year
old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene

IE(?:i‘:JVgrrncrllse disruptor transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3)
Estradiol and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg

mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embryos.
The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded signif-
icantly to the highest concentration of EE2 only, while older life stages responded to the highest doses
of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater
for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early
development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower
doses of each compound than was detected by gene transcription suggesting plasma Vtg is a more sen-
sitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2, and plasma T3
was decreased at the highest dose of EE2. Our results indicate that all life stages are potentially sensitive
to endocrine disruption by estrogenic compounds and that physiological responses were altered over a
short window of exposure, indicating the potential for these compounds to impact fish in the wild.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Environmental contaminants are potentially one of several fac-
tors that contributed to the decline of Atlantic salmon (Salmo
salar) on the east coast of North America, and may currently
play a role in poor recruitment success and restoration of this
species (Fairchild et al., 1999). In particular, endocrine disrupting
compounds (EDCs) are an increasing concern for wildlife, since
population-level impacts of these compounds have been docu-
mented (Kidd et al., 2007; Lange et al., 2011; Blazer et al., 2012).
Endocrine disrupting compounds are most often associated with
municipal and industrial wastewater effluent, can feminize male
fish in receiving waters (Sumpter, 2005; Desbrow et al., 1998;
Blazer et al., 2007), and lead to local extinction (Kidd et al., 2007).
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http://dx.doi.org/10.1016/j.aquatox.2014.03.015
0166-445X/© 2014 Elsevier B.V. All rights reserved.

Two of the most prevalent estrogenic compounds in rivers and
estuaries include the natural steroid, 17 3-estradiol (E2), and a syn-
thetic estrogen, 17 a-ethinylestradiol (EE2) (Desbrow et al., 1998).
Plasticizers such as 4-nonylphenol (NP) are also present in efflu-
ent, and act as weak feminizing compounds in fish (Servos et al.,
2003). Routine wastewater treatment does not completely remove
these compounds (Johnson and Sumpter, 2001), and fish in receiv-
ing waters exhibit histological evidence of feminization, biased sex
ratios, and developmental abnormalities (Oberdorster and Cheek,
2001; Matthiessen, 2003; Bernanke and Koehler, 2009; Leet et al.,
2011).

Exposure to EDCs can elicit severe and long-lasting impacts, pri-
marily when fish are exposed early in development (Strussmann
and Nakamura, 2002; Mills and Chichester, 2005). Several studies
demonstrate that particular developmental stages are more vulner-
able to EDCs than others. For example, Liney et al. (2005) exposed
the common roach, Rutilus rutilus, to a gradient of wastewater efflu-
ent and found little response in adults but 100% feminization in fish
exposed during the embryonic through juvenile period. Atlantic
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Table 1

Nominal concentrations and 17 3-estradiol equivalent quotient (EEQ) of compounds used in this study with range of concentrations of each compound reported for multiple
measures in surface water. Range of mean concentrations of compounds in surface waters from (a) Leet et al. (2011) and (b) Mao et al. (2012). Estrogen Equivalent Quotients
(EEQ) are means =+ S.E. from 2 to 8 samples collected across different life stages. BD-below the limit of detection (LOD) E; LOD=4.5 x 10-'1, Sanseverino et al. (2005).

Compound Nominal concentrations
nM ngl-! EEQ (ngl-1) Surface waters
17 a-Ethinylestradiol (EE2) Low 0.004 1.2 10.3+0.4 0.04-28.6ngl1?
Medium 0.04 11.9 88.4+10.6
High 0.4 118.6 76.1+7.6
17 B-Estradiol (E2) Low 0.04 10.9 7.6+0.5 0.11-84.3ngl-1°
Medium 04 109.0 61.2+6.7
High 4 1089.6 810.8+108.3
Nonylphenol (NP) Low 4 881.4 BD 15-30,000ng1-1°
Medium 40 8814.0 BD
High 400 88140.0 13.5+0.7

2 Range of mean concentrations of compounds in surface waters, compiled by Leet et al. (2011).

b Approximate range of concentrations of NP compiled by Mao et al. (2012).

cod (Gadus morhua) embryos and larvae exposed to produced oil
discharge water and E2 exhibit higher mortality and impacts to
fitness than in fish exposed as post-metamorphic juveniles (Meier
etal.,2010). Similar life stage-dependent effects have been demon-
strated in zebrafish (Brion et al., 2004), medaka (Koger et al., 2000),
and fathead minnow (van Aerle et al., 2002). Atlantic salmon have
prolonged early life stage development, with specific biotic and
abiotic requirements that are essential for normal development.
Therefore, a better understanding of differential life stage sensi-
tivity is important for management and conservation practices in
areas where environmental contaminants may pose a threat to
Atlantic salmon fitness and recruitment early in life.

Vitellogenin (Vtg) is a precursor egg yolk-protein that is often
used as a biomarker of feminizing EDC exposure (Bernanke and
Koehler,2009; Leet et al.,2011). Elevated Vtg is normally associated
with reproductive, spawning females (Tyler and Sumpter, 1996),
and is often a more sensitive measure of contaminant exposure
than phenotype or population-level responses (Leet et al., 2011).
Vitellogenin production in juvenile or male fish, in particular, can
be a very sensitive indicator of exposure to feminizing compounds
at environmentally relevant concentrations (Leet et al., 2011). Ele-
vated plasma concentrations of vitellogenin have been found in
male and juvenile fish from sewage-impacted aquatic ecosystems
around the world (Bernanke and Koehler, 2009), which supports
the use of Vtg as a biomarker for estrogenic EDC exposure (Tyler
and Routledge, 1998). Elevated plasma Vtg in fish has been associ-
ated with enlarged livers (Kaptaner et al., 2009), abnormal gonad
development (Lye etal., 1997; Tyler and Jobling, 2008), and reduced
growth (Woltering, 1984). It has also been used to compare sensi-
tivities of multiple life stages to estrogenic exposure (Leet et al.,
2011).

The objective of this study was to compare the vitellogenin
response to three common endocrine disrupting compounds in
four stages of Atlantic salmon development; embryos, yolk-sac lar-
vae, feeding fry, and smolts (the downstream migratory phase of
anadromous salmonids). Exposures were carried out at short-term
(4 day) assessments, similar to whole effluent toxicity (WET) tests
mandated by regulating agencies (Chapman, 2000). For each com-
pound, we used a nominal dose that approximates a concentration
that would be seen in an urbanized riverine system (low), a con-
centration seen in wastewater effluent (medium), and a positive
control (high) along with a vehicle only control. Relative estrogenic-
ity of treatments was compared with the bioluminescent yeast
estrogen screen (BLYES; Sanseverino et al., 2005). We measured
Vtg mRNA in all life stages, in addition to Vtg plasma concentra-
tion in smolts in which we could collect sufficient plasma volumes
for analysis. In addition, we assessed potential secondary impacts

to performance and stress in smolts in the form of hepatosomatic
index, and the levels of thyroid hormone and cortisol which are
important regulators of salinity performance in migrating Atlantic
salmon (McCormick, 2001; Stefansson et al., 2012).

2. Methods
2.1. Experimental methods

Experiments were carried out using Atlantic salmon (Salmo
salar) encompassing four life stages: late-stage embryos, newly
hatched larvae, feeding fry, and smolts. All life stages were the
progeny of sea run adults from the Connecticut River stock of
Atlantic salmon, a population that is under active restoration.
Treatments with embryos, yolk-sac larvae and feeding fry were car-
ried out in 1.1L aerated flow-through chambers with a 19L head
tank. In mid-February, twenty embryos (approximately 0.15 g each,
roughly 2 weeks prior to hatch) were allocated to each chamber,
two chambers per treatment and acclimated to 7 °C (to minimize
the chance of temperature-induced malformations that occurs at
temperatures >11°C, Poxton, 1991) over 72 h before exposures
were conducted. Aerated, covered head tanks were refilled daily
with dechlorinated city water and the compound of interest, ensur-
ing a turnover of 7 timesd~! and an average flow rate of 0.25Lh~1.
All exposures were carried out in a cold room to maintain tem-
perature. Compounds (17 a-ethinylestradiol (EE2), 17 (3-estradiol
(E2) and 4-nonylphenol (NP)) were purchased from Sigma-Aldrich
(St. Louis, MO) and all concentrations were converted to nanomo-
lar for comparison (Table 1). All compounds used were solubilized
in methanol (used as a vehicle for each compound) at a final con-
centration of <0.0001% to minimize solvent toxicity (Lerner et al.,
2007a). Control treatments received solvent only. At the end of
96 hembryos were anesthetized with MS-222 (Argent Laboratories,
Redmond, WA), briefly weighed, then immediately snap-frozen on
dry ice, and stored at —80 °C prior to analysis.

Yolk-sac larvae and feeding fry were exposed consecutively, fol-
lowing embryo exposures, and all animals were taken from the
same batch of fish produced. Larvae and fry stages were exposed at
15 °C. Two-week post-hatch yolk-sac larvae (approximately 0.16 g)
were used in exposures in March 2011 at 18 fish per replicate,
two replicates per treatment and feeding fry (approximately 1
month post yolk sac absorption) were exposed in early May, 2011
at 15 fish per replicate, two replicates per treatment. Both life
stages were acclimated in the exposure chambers for 72 h prior
to beginning of the experiment. Feeding fry (and 0.204+0.001g
and 30.7 + 0.1 mm) were acclimated to pelleted salmon feed in the
hatchery and fish were fed daily prior to and during the exposures.
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Waste was siphoned from experimental tanks daily to minimize
bacterial degradation of contaminants.

Atlantic salmon parr from the Kensington Atlantic State Fishing
Hatchery (CT, USA) were brought to the Conte Anadromous Fish
Research Center in October 2010 and raised until fish were large
enough in size to undergo smolting in the spring of 2011. These
smolts were exposed to all compounds in three consecutive, 4-day
experiments between April 5th and April 19th, 2011, during the
predicted peak of smolting. Smolts (15.9+1.1g and 32.5+6.3cm)
were placed in 30L circular tanks at six fish per tank, two tanks
per treatment, on the morning the exposures were initiated. Fish
were not fed during the 4-day period to minimize potential aggres-
sive interactions. Large, covered 560 L circular tanks served as head
tanks, which were filled just prior to the beginning of the exposure
period. Head tanks were replenished daily with the appropriate vol-
ume of stock contaminant in methanol mixed with dechlorinated
city water, yielding a turnover time of at least 2 timesd~! and flow
rate of approximately 10.5Lh-1,

Following the 96-h exposures, smolts were removed from
experimental tanks, anesthetized with a lethal dose of MS-222, and
immediately bled with heparinized syringes following collection
of length and weight data. Fish were immediately placed on ice,
and gill and liver tissues were removed, snap-frozen and stored
at —80°C until analysis. No signs of precocious sexual matura-
tion were observed. Photoperiod for all life stages was set to the
natural light:dark cycle (between LD 10:14 and 14:10 from mid
February through mid-May) for Turners Falls, MA. Four individuals
per replicate (eight total per treatment) were randomly chosen for
all analyses with each life stage.

2.2. Relative estrogenicity of treatments

Tank water samples were collected on the third day of expo-
sure for analysis of relative estrogeniticy. Samples were collected
in 50 ml polypropylene tubes from all tanks, immediately frozen
at —80°C and stored at —20°C. Samples for all NP treatments
and the lowest EE2 and E2 treatments were subjected to solid
phase extraction (SPE) using OASIS® HLB (200mg) glass car-
tridges (Waters Corporation, Milford, MA), following a modified
version of a method published by Lagana et al. (2004). Solid
phase extraction and concentration was necessary for these treat-
ments to ensure that estrogenicity could be measured with the
bioluminescent yeast estrogen screen (BLYES; Sanseverino et al.,
2005). All solvents were HPLC grade. Cartridges were sequen-
tially pre-conditioned with 5 ml each of: 100% ethyl acetate, 50:50
methanol:dichloromethane (DCM), 100% methanol, and HPLC-
grade water pH 3. Each sample (45ml) was loaded onto the
cartridge at a flow rate of 5-6 ml/min (continuous vacuum). Elu-
tion solvents consisted of 6 ml methanol (fraction one) and 6 ml of
50:50 methanol:DCM (fraction two). Five hundred microliters of
100% methanol were added to each glass tube to solubilize sam-
ples. Samples were then pooled and transferred to brown sample
ampoules (1 ml total).

The total concentration of estrogenic compounds in the water
samples relative to 17 3-estradiol (E2) (17 3-estradiol equivalent
quotient (EEQ)) was estimated using the BLYES assay (Sanseverino
et al., 2005). The BLYES assay was performed according to Ciparis
et al. (2012) with strain BLYES provided by Dr. John Sanseverino
(University of Tennessee) and maintained in a dormant stage at 4°C
in modified Yeast Minimal Media (YMM leu-, ura-; Routledge and
Sumpter, 1996). For the assay, strain BLYES was brought to early
stationary phase in YMM at 30°C on a rotary shaker to an approx-
imate ODggg of 0.750. The BLYES assay was performed in sterile,
clear-bottom, black polystyrene 96-well assay plates (Costar, Corn-
ing Incorporated, Corning, NY). SPE extracted samples were diluted
to 10% in YMM, and 100 w1 of the diluted sample was added

to each well in duplicate. Non-extracted samples were analyzed
by adding 75 .l of water sample to 25 ul of 4x YMM. All assay
plates included a 12-point standard curve consisting of E2 ranging
from 2.3 x 10~°-0.50 M and sample blanks containing YMM only.
Strain BLYES was added to all preloaded wells at a volume of 100 .1,
resulting in a final sample dilution of 5%. Plates (covered) were incu-
bated in the dark at 30 °C for 6 h on an orbital shaker. Luminescence
was quantified using a Molecular Devices SpectraMax M4 in lumi-
nescence mode. Data was acquired and analyzed in SoftMaxPro 6.2.
The EC5g [M] values for E2, EE2 and NP as defined in the BLYES assay
validation are 2.4 x 10710, 2.5 x 101! and 1.7 x 10~ respectively
(Sanseverino et al., 2005).

2.3. Atlantic salmon Vtg mRNA quantification

Total RNA was extracted from whole animals (embryo, larvae,
and feeding fry) or liver tissue (feeding fry and smolts) using a
phenol-based extraction (Tri-Reagent, MRC, Cincinnati, OH, USA).
RNA was DNAse treated (RQ1, Promega Corporation, Madison,
WI, USA) and reverse transcribed with the High Capacity RNA-to-
cDNA master mix (Life Technologies, Carlsbad, CA) according to the
manufacturers’ instructions. Primers for salmon Vtg mRNA quan-
tification and cycling conditions are described in Arukwe and Roe
(2008). Primers and cycling conditions for the housekeeping gene
(EF-1a) were taken from Ingerslev et al. (2006). Both primer sets
were validated using the Roche 480 LightCycler (Roche Applied
Science, Indianapolis, IN). Each primer set yielded optimal melt-
ing curves indicating the production of one amplicon (~200 base
pairs) each. Briefly, qPCR analysis was carried out using LightCy-
cler 480 SYBR Green I Master Mix (Roche Applied Science) in 12 .l
reaction volumes with primers at 500 nM. No-template controls
and negative reverse transcription controls were run on each plate
and confirmed the absence of DNA contamination in the samples.

Plate to plate variation was accounted for by running a standard
curve and control sample on each plate, and Vtg mRNA was cal-
culated from the plate-specific standard curve. Duplicate Ct values
that differed by more than 0.5 cycles were removed from analysis
(<2% of data). Data was expressed relative to EF-1a and normalized
to the control mean. Four individuals per replicate (eight total per
treatment) were randomly chosen for all analyses and life stages.

2.4. Vtg enzyme immunoassay (EIA)

A quantitative and sensitive EIA was developed from the meth-
ods outlined in Peck et al. (2011) using a polyclonal, rabbit
anti-Atlantic salmon Vtg antibody, AA-1 (Biosense Laboratories
AS, Bergen, Norway). Costar, 96-well microtiter plates (#3369,
Corning Life Sciences, Tewksbury, MA) were coated with 60 ng/ml
Atlantic salmon vitellogenin (#9902, Biosense Laboratories, Bergen,
Norway) in 0.05M Na,CO3; and incubated overnight at 4°C. The
following day, plates were washed with cold phosphate-buffered
saline (PBS) with 0.05% Tween-20 (Sigma-Aldrich), pH 7.2 (PBST)
and blocked with PBST with 2% milk powder overnight at 4 °C. Sam-
ples or standards were mixed with the primary antibody (in PBST
with 1% milk powder). Samples were diluted a minimum of 1:100 to
minimize interference and false-positive readings where Vtg was
low (Peck et al., 2011) up to 1:10,000 for samples with high Vtg
content. These were mixed at 4°C overnight on a rotary shaker.
On the final day, the plate was washed with PBST, incubated with
samples or standards for 2h at 37°C. Plates were washed, then
incubated with secondary antibody (goat anti-rabbit horseradish
peroxidase conjugate (G(H+L)) (KPL, Inc., Gaithersburg, MD) at
1:2500 for 45 min at 37 °C. Color development was carried out with
TMB for 30 min then quenched with 1N H;SO4. Optical density
was measured with a BioTek Synergy 2 spectrophotometer (BioTek,
Winooski, VT) at 450 nm. Parallelism was demonstrated between
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diluted samples and Vtg standard. Inter- and intra-assay variation
were 4.9 +1.5% (+SE) and 2.7 £ 0.7%, respectively. Assay was sen-
sitive to Vtg concentration <50 ng/ml (T-test, p <0.001), indicated
by significant difference from the zero standard.

2.5. Additional physiological parameters

Hepatosomatic index (HSI) of smolts was calculated as liver
weight/total weight x 100. Thyroxine (T4) and triiodothyronine
(T3) concentrations were measured by a direct radioimmunoas-
say (Dickhoff et al., 1979) as modified by McCormick et al. (1995).
The range of the assays as defined by the standard curve was 1 to
64 ng/ml for T4 and 0.5-16 ng/ml for Ts. Plasma cortisol levels were
measured by a validated direct competitive enzyme immunoas-
say as outlined in Carey and McCormick (1998). Sensitivity of
this assay was 0.3ng/ml to 160ng/ml and the lower detection
limit was 0.3 ng/ml. Na*/K*-ATPase activity in gill homogenates
was determined using a temperature regulated microplate method
(McCormick, 1993). In this assay, ouabain-sensitive Na*/K*-ATPase
activity was measured by coupling the production of ADP to NADH
using lactic dehydrogenase and pyruvate kinase in the presence
and absence of 0.5mmoll~! ouabain. Ten microliters of samples
were run in duplicate in 96-well microplates at 25°C and read at
a wavelength of 340 nm for 10 min on a BioTek Synergy 2 spec-
trophotometer (BioTek, Winooski, VT). Protein concentration of the
homogenate was determined using a BCA protein assay (Thermo
Fisher Scientific, Rockford, IL).

2.6. Statistical analyses

The housekeeping gene, EF-1a, demonstrated stable transcrip-
tion during the fry and smolt stages among all doses of compounds
(one-way ANOVA, p=0.12 and p=0.25, respectively). Some differ-
ential transcription of EF-1ac was noted during the embryo and
larval stages, evidenced by a few significant differences in post
hoc comparisons among compounds. Therefore, our analysis was
restricted to comparisons of dosage within a single compound
for each life stage (one-way ANOVA, Holm-Sidak post hoc com-
parisons). One significant difference was noted between EF-1a
in the control vs. NP 40 nM treatment, but statistical analyses of
Vtg transcription normalized to cDNA input yielded identical sta-
tistical interpretations when compared to the data normalized
to EF-1a. All statistical analyses were considered significant at
p<0.05.

Vtg mRNA data did not differ statistically among replicates
compared for yolk-sac larvae, feeding fry, or smolt exposures.
A significant tank effect was noted for embryos, but this was
limited to EE2 (one-way nested ANOVA, p=0.002). This effect was
likely driven by high variability in responses during the embryo
stages and low numbers of fish analyzed from each duplicate
tank (n =8 per treatment analyzed). All other replicate treatments
demonstrated no statistically significant differences. Therefore,
replicate tanks were combined for all analyses. All data were log-
transformed for normality and homogeneity of variance where
necessary. Treatment effects for all physiological measures were
examined with one-way ANOVA with Holm-Sidak post hoc com-
parisons among individuals from duplicate tanks unless otherwise
stated.

Atlantic salmon Vtg protein concentration was log-transformed
for normality and treatments were compared with a two-way
ANOVA with sex as the second factor. Hepatosomatic Index data did
not meet assumptions of normality and equal variance following
transformation, and data were compared using a one-way ANOVA
on ranks with Dunn’s post hoc comparisons. No sex-specific differ-
ences in the additional physiological parameters were observed.

All other physiological measures were compared with one-way
ANOVA. All statistical analyses were carried out with SigmaPlot
version 11.0 (Systat Software, San Jose, CA).

3. Results

Four-day (96-h) exposures were carried out on embryos, yolk-
sac larvae, feeding fry and smolts with minimal mortality (life stage,
mean mortality per replicate +S.E; embryo, 4.5 + 1%; yolk-sac lar-
vae, 1.1 £ 1%; feeding fry, 2.2 + 2%; smolts, 0% mortality). Mortality
was not dose- or treatment-dependent.

Relative estrogenicities of treatments (EEQs), as measured by
the BLYES assay, were similar between the low and medium EE2
and E2 treatments but were low to undetectable for NP treatments
as well as solvent-only controls (Table 1). Relative estrogenicity
(EEQ, or 17 B-estradiol equivalence quotient), was most directly
comparable to the nominal E2 treatment loading, and showed
a log-scale dilution among treatments. EEQ values for E2 were
approximately 26-44% lower than expected based on the nominal
E2 loading. EE2 and NP EEQ values were not directly compara-
ble to the nominal concentrations of these two compounds due to
estrogen receptor-specific differences in estrogenicity, but EE2 EEQ
values most closely mimicked E2 values. EE2 did show a change in
magnitude in EEQ values between the low and medium doses, and
these EEQ values were similar in magnitude to the EEQ values for
E2. However, the highest concentration of EE2 had an EEQ value
that was lower than expected based on the nominal dose. NP low
and medium EEQ values were below the detection limit, and the
high dose of NP elicited a low EEQ response that was comparable
to that of the low doses of EE2 and E2.

3.1. Atlantic salmon Vtg mRNA

All life stages demonstrated upregulation of Vtg mRNA in
response to EDC's with maximal transcription in whole body
comparisons occurring in feeding fry (one-way ANOVA with
Holm-Sidak post hoc comparisons, Fig. 1). Embryos increased Vtg
transcriptioninresponse to 0.4 nM 17 a-ethinylestradiol, but lower
concentrations of this compound, as well as 17 -estradiol and
nonylphenol, did not induce a statistically significant vitellogenic
response (Fig. 1A). Yolk-sac larvae Vtg transcription increased sig-
nificantly and in a dose-dependent manner for the two highest
concentrations of all three compounds (Fig. 1B). Feeding fry had
a statistically similar response to the compounds compared to
yolk-sac larvae, but the magnitude of transcriptional upregula-
tion was greater for feeding fry (~500 times greater than control)
than for yolk-sac larvae (~200 times greater than control) (Fig. 1C).
Smolt liver tissue demonstrated similar dose-dependent Vtg mRNA
upregulation for both 17 a-ethinylestradiol and 17 B-estradiol,
whereas a reduction in Vtg mRNA (relative to the control) was
observed for fish exposed to 40 and 400 nM nonylphenol (Fig. 1D).
Nominal Lowest observable effect concentrations (nLOEC) were
observed for embryos exposed to EE2, and were identical for
all three compounds for yolk-sac larvae, feeding fry and smolts
(Table 2).

Feeding fry Vtg transcription in whole body (Fig. 1C) was com-
pared with Vtg transcription in liver (Fig. 2) to determine whether
patterns of transcription differed significantly. Both whole body
and liver only Vtg showed significant upregulation in response to
the two highest doses of EE2 and E2, as well as the highest dose
of NP. The pattern of response differed between tissue types only
with the intermediate dose of NP, where Vtg transcription was
elevated in the whole body, but not significantly elevated in the
liver.
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Fig. 1. Whole body Vtg mRNA transcription in Atlantic salmon (A) embryos, (B) yolk-sac larvae and c) feeding fry and liver Vtg mRNA transcription in (D) smolts. Values are
normalized to the housekeeping gene, EF-1q, then normalized to the control. For each life-stage, the control is indicated in white, 17 a-ethinylestradiol (EE2) is indicated in
light gray, 17 3-estradiol (E2) in dark gray and 4-nonylphenol (NP) in black. Bars represent treatment means = standard error for n = 8. Asterisks indicate significant differences

(p<0.05) between each concentration and the control for each life stage.

3.2. Vtg enzyme immunoassay (EIA)

Smolt plasma Vtg protein concentration increased in response
to all compounds (1-way ANOVA, p<0.001) and a clear dose-
dependent response for both 17 «-ethinylestradiol and 17
[3-estradiol wherein all doses elicited increased Vtg (Fig. 3). Dose-
dependency was less clear for nonylphenol, but both the 4.0 and
400 nM doses elicited significant increases in plasma Vtg concen-
tration. No differences for Vtg concentration based on sex (n=4
females and 4 males per treatment) were found (2-way ANOVA,
p=0.315).

Table 2

Nominal lowest observable effect concentration (nLOEC) for early life stage expo-
sures in Atlantic salmon based on Vtg mRNA upregulation of whole body (embryo,
larvae and feeding fry) or liver only (feeding fry and smolts).

Compound (nominal, M)

- 17 Nonylphenol
Ethinylestradiol [3-Estradiol (NP)
(EE2) (E2)
Embryo ND 0.4 ND
Yolk-sac larvae 0.4 0.04 40.0
Feeding fry(whole body) 0.4 0.04 40.0
Feeding fry(liver) 0.4 0.04 400.0
Smolts(liver) 0.04 0.4 40.0

ND, not determined.

3.3. Additional physiological parameters

In smolts, hepatosomatic index (HSI) was significantly elevated
in response to the highest doses of 17 a-ethinylestradiol and 17
[3-estradiol, but no significant differences were noted for nonylphe-
nol (Fig. 4). Additionally, plasma T4 and cortisol levels did not vary
among treatments (Table 3) and plasma T3 levels were significantly
reduced by exposure to 17 a-ethinylestradiol.

Gill Na*/K*-ATPase (hereafter, NKA) activity was measured in
smolt gill tissue to determine potential effects of EDC exposure on
seawater tolerance. Controls from each set of exposures differed
significantly, with nonylphenol control NKA activity being signif-
icantly lower than control NKA values for 17 a-ethinylestradiol.
Within a given experiment (all doses of a single compound)
no significant differences in NKA were noted among concen-
trations. Therefore, NKA activity did not exhibit compound- or
dose-dependent response.

4. Discussion

Atlantic salmon demonstrated robust physiological responses
to three estrogenic compounds commonly found in wastewater
effluent and urbanized river systems and estuaries. In this study,
Vtg served as a biomarker of response during 4-day exposures to
varying concentrations of these compounds. All life stages clearly
responded to aqueous exposure, but sensitivity (lowest dose of
response) and the magnitude of response appeared to be life stage-,
compound- and dose-dependent. The estrogens, E2 and EE2 elicited
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Table 3
Physiological and endocrine changes in smolts in response to EDC exposure. All values are mean + SE for n=8.
a-Ethinylestradiol Compound 17 (3-estradiol Nonylphenol Statistical test and significance level
(EE2) (E2) (NP)
T4 (ng/ml) Control 6.2 £0.7 4.1+ 0.1 3.7+0.5 One-way ANOVA
Low 3.6 £0.2 49+ 0.2 23 +0.1 EE2,p=0.44
Medium 35+02 54 +0.2 31+03 E2,p=0.81
High 32+02 52+ 04 25 +0.1 NP, p=0.18
T; (ng/ml) Control 24+03 24 +0.1 2.7+03 one-way ANOVA
Low 2.1 +0.1 25+03 2.7+02 EE2, p=0.004
Medium 23+02 26 +03 27+03 E2,p=0.35
High 1.6 £ 0.1¢ 20+0.2 28 £0.2 NP, p=0.36
Cortisol (ng/ml) Control 44 +1.0 42+ 1.6 241 +£ 125 One-way ANOVA on ranks
Low 31.6 + 10.6 207 £ 7.2 203+ 7.6 EE2,p=0.16
Medium 74 +£29 143 £ 6.9 225+ 8.6 E2,p=043
High 10.1 =+ 1.7 15.8 £ 4.7 14.6 + 4.5 NP, p=0.89
Na*/K*-ATPase (ng/ml) Control 4.6 + 04 5.8+ 04 42 +03 One-way ANOVA
Low 43 +04 56 +04 42 +04 EE2,p=0.73
Medium 43 + 04 5.5+ 0.6 4.7 £ 0.5 E2,p=0.97
High 4.0+03 5.7+0.5 45+ 04 NP, p=0.67

Significant treatment effects are indicated in the right-hand column in bold.
2 Significantly different from the control in post hoc comparisons. Highlighted ‘control’

the strongest overall Vtgresponse, while response to NP was muted.
Clearly, each life stage was capable of a vitellogenic response
that was partially dose-dependent, but the dose that elicited this
response and the corresponding magnitude of response varied
among life stages.

Relative estrogenicity was compared among treatments using
EEQs obtained from a BLYES assay (Sanseverino et al., 2005).
Because the BLYES assay is based on a response equivalent to
17 B-estradiol, the E2 treatments were most closely comparable
between the nominal E2 concentrations and the corresponding
EEQs. The E2 treatments demonstrated logarithmic EEQ values that
were consistent with the nominal concentrations (Table 1). How-
ever, EEQ values for E2 were approximately 33% less than would
be expected based on the nominal concentrations, indicating that
actual E2 concentrations were likely 33% of nominal concentra-
tions. EE2 demonstrated similar EEQ values for the low and medium
doses, but the highest dose was considerably lower than expected,
despite significant responses in Vtg in response to the high dose of
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Fig. 2. Liver Vtg mRNA levels in Atlantic feeding fry exposed to endocrine disrup-
ting compounds. Values are normalized to the housekeeping gene, EF-1c, and then
normalized to the control. The control is indicated in white, 17 a-ethinylestradiol
(EE2) is indicated in light gray, 17 B-estradiol (E2) in dark gray and 4-nonylphenol
(NP) in black. Bars represent treatment means + standard error for n=8. Asterisks
indicate significant differences between each concentration and the control.

row indicates significant differences among controls (see text for details).

EE2. Lower than anticipated EEQ values may be due to loss of EE2
from the water column by organism uptake, bacterial degradation,
or compound adsorption to tank walls, organic material (i.e. feces)
and/or polystyrene collection tubes (Cajthaml et al., 2009). Given
the robust Vtg response in all life stages, it is likely that organism
uptake played a role in removing compounds from the water col-
umn. EE2 is generally more stable than natural estrogens, but due to
high hydrophobicity, adsorption may have been a primary factor in
removing a large portion of the EE2 from the highest concentration.

Nonylphenol showed weak to no estrogenic activity in the BLYES
assay, with the highest dose of NP resulting in an EEQ value that was
comparable to the low dose EEQ values of EE2 and E2. Both the low
and medium doses of NP were below the detection limit. Nonylphe-
nol demonstrates a weak affinity for the estrogen receptor family
and is generally considered to be a weakly estrogenic member of the
alkylphenol group (Shanle and Xu, 2011). For example, nonylphe-
nol was 120,000-fold less estrogenic than 17 B-estradiol when
measured in an estrogen receptor binding assay (Lee et al., 2012)
and the concentration to induce luciferase activity via the estrogen

1
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Fig. 3. Plasma Vtg protein concentration in Atlantic salmon smolts exposed
to endocrine disrupting compounds. The control is indicated in white, 17 «-
ethinylestradiol (EE2) is indicated in light gray, 17 B-estradiol (E2) in dark gray
and 4-nonylphenol (NP) in black. Bars represent treatment means + standard error
for n=4 males and 4 females. Asterisks indicate significant differences between each
concentration and the control.
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Fig. 4. Hepatosomatic index for Atlantic salmon smolts exposed to endocrine dis-
rupting compounds. Bars represent treatment means =+ standard error for n=8.
Asterisks indicate significant differences between each concentration and the con-
trol for each compound.

receptors in a transfected lactoferrin reporter assay was 1000 times
greater than the concentration of 17 (-estradiol (Ranhotra and
Teng, 2005). In the BLYES assay, the ECsg [M] for para-nonylphenol
was 1.7 x 10~ (Sanseverino et al., 2005), which is approximately
the same order of magnitude as the highest concentration for 4-
nonylphenol used in this study. Sanseverino et al. (2005) used
para-nonylphenol, while in the present study 4-nonylphenol was
used, which is generally thought to change the estrogenicity based
on isomer content and physical structure (Lalah et al., 2007).

In this study, none of the tested compounds resulted in
detectable mortality during the 96-h exposure period. Many tests
for compound or effluent toxicity focus on LD5q, the dose or dilu-
tion at which 50% mortality occurs (Chapman, 2000). This measure
of mortality often overlooks sublethal effects that can alter long-
term behavior, disease susceptibility and overall fitness. Lerner
et al. (2007b) details an example of sublethal impacts on Atlantic
salmon. Yolk-sac larvae exposed to E2 and NP for 21 days had min-
imal mortality during exposure to E2 and the lowest dose of NP,
whereas the high dose of NP elicited mortality during the exposure
period (21 days). However, all EDC treatments resulted in signif-
icant cumulative mortality by 60 days after the exposures were
ended and the fish had reduced ability to increase gill Na*/K*-
ATPase activity during smolt development, indicating a decreased
capacity for seawater survival. Other studies have linked estrogenic
compounds to reduced salinity tolerance and performance during
smolting (McCormick et al., 2005; Bangsgaard et al., 2006), demon-
strating long-lasting, sublethal effects that result in morbidity and
mortality later in life.

Vitellogenin is a common biomarker of EDC exposure that may
be indicative of potential sublethal impacts (Jones et al., 2000). In
this study, Vtg was used to compare responsiveness among fish
of different life stages, as this could suggest the potential for dif-
ferential susceptibility to endocrine disruption among life stages.
Vtg transcription (whole animal or liver) was used to compare the
nominal Lowest Observable Effect Concentration (LOEC, nominal
concentrations) across life stages. The liver is the primary site of
Vtg transcription and protein production (Mommsen and Walsh,
1988), and in this study we assumed that the Vtg mRNA signal in
whole animals resulted primarily from transcription in the liver.
The comparison between feeding fry Vtg in liver and whole bod-
ies demonstrated that the overall patterns of responsiveness to
the three compounds were similar, with the one exception of a

difference in NP responsiveness between liver and whole body for
the 40 nM dose. It is interesting to note that fold-change in tran-
scription for the 40nM dose for both the whole body and liver
show similar ranges (0.4-10.7, n=8 and 1.9-15.6, n=38, respec-
tively), with the exception of a single individual with a 185-fold
increase in whole body Vtg mRNA levels that is driving this differ-
ence. This suggests there is significant individual variation in these
early life-stages during early development of estrogen signaling,
and that this variability may be pronounced when the estrogenic
signal is weak, as may be the case with NP (Shanle and Xu, 2011).
The comparison between Vtg transcription in fry liver and whole
bodies demonstrates that while the overall pattern is similar, the
magnitude of fold-change in transcription differs by 10- to 20-
fold between liver and whole body responses with liver having
the higher maximal transcription. This is likely to be a reflection
of ‘RNA swamping’, where the mRNA signal from liver is high, but
is diluted in whole-body RNA extracts due to the inclusion of other,
non-Vtg encoding mRNA from other tissue types (Mommsen and
Walsh, 1988). However, these data suggest that comparisons of Vtg
patterns from whole body and liver extracts are similar at least with
regard to dose dependency and minimum effective doses.

Embryos displayed reduced and more variable Vtg mRNA
response relative to the yolk-sac larvae and feeding fry. Embryo
Vtg was upregulated in response to the highest dose of EE2 (nLOEC
at 0.4nM) and no dose of either E2 or NP elicited a statistically sig-
nificant response (nLOEC not determined), despite some variability
in Vtg response This variability in Vtg transcription within single a
treatment suggests that embryos are undergoing a developmen-
tal transition that increases responsiveness during this life stage,
despite an overall non-significant response, and that the variability
in response may be due to small changes in developmental stages
among embryos. The comparison of variability in transcription
between embryos and older life stages may be driven by differences
in experimental temperature (7 °C for embryos, 15 °C for all other
life stages). Low temperatures in the embryonic stages may have
suppressed Vtg transcription relative to embryos that were reared
at 15°C, but S. salar embryos reared above ~11°C demonstrate
reduced hatch rate and developmental deformities (Poxton, 1991).
Itis important to note that these treatments were carried out within
the environmentally relevant temperature range for each life-stage
(Poxton, 1991) and therefore are representative of responses in the
wild. Whole animal Vtg mRNA was clearly upregulated in yolk-
sac larvae and feeding fry exposed to EE2 (several hundred times
the number of control transcripts and 10- to 60-fold greater tran-
scription levels than in EE2-responsive embryos). Taken together,
high variability in responsiveness within treatments in embryos
and increasing maximal responsiveness in progressive life stages
suggest a developmental progression in estrogen signaling that is
occurring in late-stage embryos and/or newly hatched larvae. To
determine the timing of responsiveness in the Vtg gene, it would
be necessary to assess multiple timepoints in embryonic develop-
ment, given the protracted nature of Atlantic salmon embryonic
development (Poxton, 1991). Stage of exposure is an important
consideration for biomarker assays with Atlantic salmon, and pos-
sibly other teleost early life stages.

One plausible explanation for these life-stage differences in Vtg
may be due to a developmental increase in estrogen receptor-
mediated Vtg induction. The impacts of the endogenously regulated
natural estrogen, 17 3-estradiol are mediated by at least three
known estrogen receptor (ER) subtypes in teleosts, ERa, ER31
and ER 2 (Katsu et al., 2013; Nelson and Habibi, 2013), but a
fourth isoform (ERa2) has been found in a related species, rain-
bow trout (Nagler et al., 2007). Regulation of circulating E2 by ERs
is an important regulator of ovarian development in fish and is
interlinked with growth and development (Devlin and Nagahama,
2002). Estrogen receptors increase in number during development,
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and in particular are likely to increase rapidly prior to and dur-
ing sexual differentiation and reproduction (Liao et al., 2009), and
transcription of different isoforms shifts periodically throughout
early development (Chandrasekar et al., 2010). Gonad differentia-
tion begins early in development in Atlantic salmon, as many of
the major genes involved in sex determination and differentia-
tion are upregulated in the embryonic stage (von Schalburg et al.,
2011). Gonad development is plastic throughout early develop-
ment, and exposure to aqueous and dietary EDCs can skew sex
ratios (Davidson et al., 2009; Norrgren et al., 1999) by binding to
the estrogen receptor(s) (Kloas et al., 2000; Scholz et al., 2013).
Exposure to estrogenic compounds in the wild during early devel-
opment could have profound effects on population dynamics and
recruitment success of Atlantic salmon by affecting sex ratios and
reproductive development.

Salmon smolts were also clearly sensitive to each compound,
with liver Vtg mRNA upregulated in a dose-dependent manner, and
anominal LOEC at the intermediate dose for each compound (Fig.2).
Plasma Vtg was significantly increased in response to the lowest
dose of each compound, but this was not mirrored by Vtg mRNA lev-
els. One possible explanation for this discrepancy between mRNA
and protein responses is that Vtg mRNA was upregulated early
in the exposure period, and by day four Vtg mRNA transcription
had decreased from previous levels in the lowest concentration
exposures. Further, the low and medium dose of NP exhibit down-
regulation of Vtg mRNA, providing further support for potential
downregulation of Vtg. Vitellogenin transcription is transient, and
temporal lags between Vtg mRNA transcription and Vtg protein
concentration in the plasma have been documented (Bowmanetal.,
2000; Korte et al., 2000). Vitellogenin protein concentration is
clearly the more sensitive measure of EDC exposure for smolts in
the present study, and our results our supported by reports of ele-
vated Vtg that is often present in the plasma for days to weeks
following exposure (Korte et al., 2000). Here, we have developed
and validated a very sensitive EIA for the detection of low concen-
trations of Atlantic salmon Vtg, and this technique could be used
as a non-lethal biomarker of EDC exposure in wild fish. We argue
that in certain cases, this immunochemical approach may be more
sensitive for determining exposure to estrogenic compounds than
a molecular-based approach.

Vitellogenin is used as a biomarker of EDC exposure in both
laboratory experiments and in wildlife (Bernanke and Koehler,
2009). Elevated Vtg outside of the normal period of reproduc-
tion is strongly associated with negative impacts to fitness such
as depressed growth (Leet et al., 2011), altered gonad morphol-
ogy and function (Tyler and Routledge, 1998; Tyler and Jobling,
2008), and reproductive success (Mills et al., 2003). In some cases,
the accumulation of Vtg in circulation can impair liver function
and lead to pathological changes in the liver, kidney and testes
(Folmar et al., 2001; Palace et al., 2002). Effects of EDCs on Vtg
may be ephemeral or persist for more than 4 days (Tyler et al.,
1998; Leet et al,, 2011). If spawning occurs in areas where EDCs
are ubiquitous, exposure may span weeks to months during early
development, potentially inducing a much greater Vtg response
than the one demonstrated here. Smolts may likely see a similar,
short-term exposure to these compounds from wastewater effluent
as they migrate though urbanized areas. However, in an impacted
river with multiple wastewater dischargers, smolts may potentially
experience high concentrations of EDCs throughout their migratory
journey.

Other measures of physiological status were also impacted by
EDC exposure. Hepatosomatic index was clearly elevated in smolts
exposed to high concentrations of EE2 and E2, presumably due to
the increase in both hepatocyte size and number stemming from
increased Vtg synthesis and clearance of byproducts of contam-
inant metabolism (Leet et al., 2011). Increased HSI is a typical

response to endogenous estrogens as well as endocrine disruptor
exposure (Keenetal.,2005; Lerner et al.,2012). HSIis often elevated
naturally during reproduction as a result of increased protein syn-
thesis and Vtg production and may be reflective of increased Vtg
production in the present study. The thyroid hormones (thyrox-
ine, T4 and triiodothyronine, T3) are important indirect regulators
of growth, smolt development and salinity tolerance in Atlantic
salmon (McCormick, 2001; Stefansson et al., 2012), but regulation
of these hormones is often disrupted in response to estrogenic com-
pounds (Keen et al., 2005; Lerner et al., 2007a). Smolting generally
results in an increase in circulating T4 and T3 levels (Stefansson
et al., 2012), but reductions in T3 have been documented for expo-
sure to compounds during smolting (McCormick et al., 2005; Lerner
et al., 2007a). In this study, T3 was significantly reduced in fish
exposed to the highest dose of EE2, but no significant changes to
T4 were observed. This is consistent with results from aqueous
exposure to EDCs (Lerner et al., 2007a) as well as dietary exposure
(Keen et al., 2005) in salmonids. Reductions in T3 may contribute
to reduced osmoregulatory performance in animals, but this likely
requires changes to other hormonal processes involved in smolt-
ing. The parr-smolt transformation is controlled by multiple factors
including the thyroid hormones, cortisol and the growth hormone-
insulin-like growth factor axis. Increased circulating levels of these
hormones during smolting results in increased gill NKA activity and
hypo-osmoregulatory function (McCormick, 1994). In the present
study, we saw no change in Na*/K*-ATPase activity with expo-
sure to estrogenic compound. Previous studies have demonstrated
reduced ability to regulate the mechanisms necessary for seawater
entry following prolonged exposure to EDCs during an earlier life
stage (Bangsgaard etal.,2006; Lerner et al.,2007a,b). Cortisol is well
documented to influence NKA activity, and in the present study, no
changes in circulating cortisol were observed among treatments.
Together, these potential indicators of smolt impairment do not
indicate reduced ionoregulatory ability following 4-day exposure
to the compounds and concentrations used in the present study.
Previous studies have shown greater loss of gill NKA and salinity
tolerance with length of exposure (McCormick et al., 2005), so it is
likely that acute, 96-h exposures were not long enough to induce
significant changes in these indicators of osmoregulatory capabil-
ity.

This work demonstrates clear differences among life-stage in
responsiveness to three common EDCs, as measured by Vtg tran-
scription. We also found that circulating levels of Vtg were more
sensitive indicators of EDC exposure than was Vtg transcription.
Additionally, exposure to these compounds elicits some alterations
to physiological measures of osmoregulatory function in salmon
undergoing smoltification. Vtg responsiveness is likely to be an
indicator of which life stage may be responsive to environmen-
tal endocrine disruptors, but further work will be necessary to
determine which stages are most sensitive to long term impacts on
growth and reproduction. Understanding life stage sensitivity may
be an important component of conservation of Atlantic salmon in
watersheds where endocrine disrupting chemicals are prevalent.
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